

Date Planned : / /	Daily Tutorial Sheet - 4	Expected Duration : 90 Min		
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :		

46.	The group having triangular planar structures is :								(2017)
	(A)	BF ₃ , NF ₃ , Co	O_3^{2-}		(B)	CO_3^{2-} , NO_3^- ,	SO_3		
	(C)	NH ₃ , SO ₃ , C	${\rm CO}_3^{2-}$		(D)	NCl ₃ , BCl ₃ ,	SO_3		
47.	Total number of lone pair of electrons in I_3^- ion is :								(2018)
	(A)	9	(B)	12	(C)	3	(D)	6	
48.	Whiel	Which of the following compounds contain(s) no covalent bond(s)?							
		KCl, PH ₃ , O ₂	₂ , B ₂ H ₆ , H	$_2$ SO $_4$	(-)	*****			
	(A) (C)	KCl BaHa D	Ц		(B) (D)	KCl, B ₂ H ₆ KCl, H ₂ SO ₄			
49.		KCl, B_2H_6 , Points to molecular		theory which			he a viable	molecule ?	(2018)
10.	(A)	H_2^-	(B)	H_2^{2-}	(C)	He_2^{2+}	(D)	He ₂ ⁺	(2010)
		_		2		2		1102	(2019)
50 .		During the change of O_2 to O_2^- , the incoming electron goes to the orbital;							
	(A)	$\pi 2p_y$	(B)	$\sigma * 2p_z$	(C)	$\pi*2p_x$	(D)	$\pi 2p_x$	
51.		The oxoacid of Sulphur that does not contain bond between Sulphur atoms is:							
	(A)	$H_2S_2O_4$	(B)	$H_2S_2O_7$	(C)	$H_2S_2O_3$	(D)	$H_2S_4O_6$	
52 .	Amon	Among the following, the molecule expected to be stabilized by anion formation is : C_2 , O_2 , NO , F_2							
	(A)	C_2	(B)	NO	(C)	O_2	(D)	F_2	(2019)
53 .	The basic structural unit of feldspar, zeolites, mica, and asbestos is:								
	(A)	$-(\stackrel{\downarrow}{\operatorname{Si}} - O)_{\overline{n}} ($	R = Me		(B)	$\left(\mathrm{SiO}_{3}\right)^{2-}$			
	(C)	$\left(\mathrm{SiO}_{4}\right)^{4-}$			(D)	SiO_2			
54 .	The correct statement among the following is:								(2019)
	(A)	(A) $\left(\text{SiH}_{3}\right)_{3}\text{N}$ is planar and less basic than $\left(\text{CH}_{3}\right)_{3}\text{N}$							
	(B)	$\left(\mathrm{SiH_{3}}\right)_{3}$ N is planar and more basic than $\left(\mathrm{CH_{3}}\right)_{3}$ N							
	(C)	$\left(\mathrm{SiH_3}\right)_3$ N is pyramidal and less basic than $\left(\mathrm{CH_3}\right)_3$ N							
	(D)	(D) $(SiH_3)_3 N$ is pyramidal and more basic than $(CH_3)_3 N$							
55 .	Amon	Among the following species, the diamagnetic molecule is:							
	(A)	СО	(B)	O_2	(C)	NO	(D)	${\rm B_2}$	
56 .	The id	The ion that has sp^3d^2 hybridization for the central atom, is:							(2019)
	(A)	$\left[{\rm ICl}_4 \right]^-$	(B)	$\left[{\rm ICl}_2 \right]^-$	(C)	$\left[\mathrm{BrF}_2\right]^-$	(D)	$\left[\text{IF}_{6}\right]^{-}$	

57 .	Among the following molecules/ions, $C_2^{2-}, N_2^{2-}, O_2^{2-}, O_2$								(2019)	
	Which one is diamagnetic and has the shortest bond length?									
	(A)	C_2^{2-}	(B)	O_2^{2-}	(C)	O_2	(D)	N_2^{2-}		
58.	The correct statement about ${\rm ICl}_5^-$ and ${\rm ICl}_4^-$ is:								(2019)	
	(A) ICl_5 is trigonal bipyramidal and ICl_4^- is tetrahedral									
	(B) ICl_5 is square pyramidal and ICl_4^- is square planar.									
	 (C) both are isostructural (D) ICl₅ is square pyramidal and ICl₄ is tetrahedral. 									
59.	According to molecular orbital theory, which of the following is true with respect to Li_2^+ and Li_2^- ?								?	
	(A)	(A) Both are stable			(B)	Li_2^+ is stable and Li_2^- is unstable (20)				
	(C) Li_2^+ is unstable and Li_2^- is stable (D) Both are unstable					ole				
60.	In which of the following processes, the bond order has increased and paramagnetic charchanged to diamagnetic?							magnetic chara	cter has (2019)	
	(A)	$\mathrm{NO} \rightarrow \mathrm{NO}^{\scriptscriptstyle +}$	(B)	$\mathrm{N}_2 \rightarrow \mathrm{N}_2^+$	(C)	$\mathrm{O}_2 \to \mathrm{O}_2^{2-}$	(D)	$\mathrm{O}_2 \to \mathrm{O}_2^{\scriptscriptstyle +}$		
61.	Two pi and half sigma bonds are present in:								(2019)	
	(A)	N_2	(B)	N_2^+	(C)	O_2	(D)	O_2^+		
62 .	The typ	e of hybridisatio	n and n	umber of lone pa	ir(s) of e	lectrons of Xe in	XeOF ₄ ,	respectively, are	e:	

(C) sp^3d^2 and 1

 ${\rm sp}^3{\rm d}^2$ and 2

(A)

(B) sp^3d and 1

(D) sp^3d and 2

(2019)